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Abstract— By applying the extended version of Stroh’s formalism and a special technique of
analytical continuation, a general solution for the thermoclastic cellinear interface cracks between
dissimilar anisotropic media has been obtained in this paper. Special notification and examples are
given for the application of the final results to the whole field solutions of the temperature. heat
flux. displacements and stresses. The explicit expressions for the interface stresses and crack opening
displacements are also provided. Based upon this general solution, two special examples of single
crack problems are solved explicitly. One is homogeneous media. the other is anisotropic bimaterials.
The former is studied for the purpose of presenting the detailed caleulation, verifying the general
solution and discussing the validity of the solution. A clused form solution is obtained for the latter
case subjected to o uniform heat flux and loading.

[. INTRODUCTION

One of the most frequently encountered problems in composite laminates is interface
cracking, sometimes also known as delamination. Delaminations in Liyered composite
materials may occur due to a varicty of reasons, such as low energy impact, manufacturing
defects or high stress concentrations at geometry or material discontinuitics (Kardomateas
and Schmueser, 1988). Due to recent acrospace and commercial applications, laminated
composites are cxperiencing an increased utilization in high temperature environments.

A quantitative assessment of the effect of realistic delaminations on the strength and
lifetime of a laminate is diflicult. Conscequently, analytical efforts to date have only attempted
to quantify the effect of idealized delaminations, Williams (1959) discovered the so-called
oscillatory near tip behavior for an interface crack between two isotropic materials. Since
then, many authors have discussed the interface crack problems such as England (1965},
Erdogan (1965), Rice (1988) and Suo (1989) for isotropic media; and Gotoh (1967),
Clements (1971). Willis (1971), Ting (1986). Bassani and Qu (1989), Qu and Bassani (1989),
Suo (1990a), Wu (1990), Gao er al. (1992) and Hwu (1991) for anisotropic media. By a
skill of orthotropy rescaling (Suo, 1990b) which reduces plane clasticity problems for
orthotropic materials to equivalent problems for materials with cubic symmetry, certain
interface crack solutions for orthotropic materials may also be obtiained directly from
isotropic solutions. In spite of the vast resources for the interface crack problems, very few
published analytical studics are availuble for the thermoelastic interface crack problems.
The steady state thermoclastic problems of interfuace cracks between dissimilar isotropic
media have been studied by Erdogan (19635), Barber and Comninou (1982, 1983). Martin-
Moran er af. (1983) and Sumi and Uecda (1990). As for the cracks between dissimilar
anisotropic media, solutions were presented by Clements (1983) through the use of the
complex variable method. Due to the tuck of identitics among the thermocelastic constants
developed in later years (Ting. 1988: Hwu. 1990), the solutions provided by Clements
(1983) arc complicated. Moreover, without further notification those solutions can only be
applied to interface, not the full ficld domain.

In this paper, we consider an arbitrary number of collincar cracks lying along the
interface subjected to an arbitrary and self-equilibrated loading and heat flux on the upper
and lower surfaces of the cracks. The materials are assumed to be perfectly bonded at all
points except those lying in the region of cracks. To solve this problem, an extended version
(Hwu, 1990) of Stroh’s formalism (Stroh, 1958) for plane anisotropic thermoelasticity is
applied. A special technique of analytical continuation (Muskhelishvili, 1954) which is
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similar to the one proposed by Suo (1990a). is also developed to consider the misfit of
material constants along the interface. In Hwu's (1990) paper, the cracks are embedded in
the homogencous anisotropic media. While in Suo’s (1990a) paper. no thermal effect is
considered tor the cracks lying along the interface of two dissimilar anisotropic media. The
combination of the extended version of Stroh’s formalism with the method of analytical
continuation leads the problems of thermoelastic interfuce cracks to a Hilbert problem of
vector form. A derivation of the general solution to the vector form Hilbert problem is
provided in this paper. An explicit closed form solution for the thermoelastic interface crack
problems is therefore obtained. which is expressed in complex matrix notation.

Special notification and examples are given for the application of the final results to
the whole field solutions of temperature. heat flux, displacements and stresses. The explicit
expressions for the interface stresses and crack opening displacements are also provided.
The sotutions are valid only when the assumption of fully open crack is not violated. If this
iy violated. a partial contact crack may be assumed. which is similar to the problems
discussed by Martin-Moran ef af. (1983) and Barber and Comninou (1983). Ting (1986)
showed that if the negative imaginary part W of the bimaterial matrix M* (the definition
can be found in this paper) is identical to zero. there will be no interpenctration problem
for interface cracks. However, it has been argued (Rice, 1988) that the solutions can still be
used to characterize the interface fracture process since the contact zone size is found to be
extremely small for a broad range of buimaterial and loading configurations of practical
importance. Henee, in this paper no detatled discussion about the validity of fully open
crack assumption is provided. The main concern is devoted to the derivation of the general
solution to the problems of thermoelastic interface collinear cracks without any restriction
to the material properties of anisotropic media.

Two typical examples are solved explicitly. The simplest case when the two media are
composed of the same material is studied for the purpose of presenting the detailed cal-
culation and verifying the gengral solutions. A closed form solution is obtained for the case
of bimaterial intertace cracks subjected to uniform heat {lux and loading.

2. PRANE ANISOTROPIC THERMOELASTICITY

2.1, General solutions

Based upon Stroh’s formalism (Stroh, 1958) in anisotropic clasticity, a simple and
compact version of general solutions for the uncoupled steady-state plane anisotropic
thermoclasticity has been presented by Hwu (1990) as

3
T=2Rci{g(z)}. h==2Rellk+th)yg"(z)}, u=2Re { Z az‘f,(:,}+cy(:l)}.

2= 1

d) = 2 Rc{z h:/!(:x)+d(/(:l)}- (TAX = —(t)nl' G'll = ‘/)A.h (lll)
=1

where

I, =X EpXs, I =X TN, {ib}

(x,.x1) is a fixed rectangular coordinate system, Re stands for the real part of a complex
number. The prime (') denotes differentiation with respect to its argument. A comma stands
for differentiation. T.h,.u.¢ and o, represent, respectively, the temperature, heat flux,
displacements, stress functions and stresses. k,; are the heat conduction coefficients. f,(z,).
x = 1.2, 3 and g(z,) are arbitrary functions with complex arguments =, and =, respectively.
p, and (a,, b,) are the elasticity eigenvalues with positive imaginary parts and the associated
eigenvectors of

N¢ = pg. (2a)

where



Thermoelastic interface crack problems 2079

. INGON; _ ) 5
“"[N; N‘J’ 5‘{1)}’ (<o)

N, =T 'R", N,=T '=N!, N;=RT 'R"-Q =N}, ()

and
Q:k = Cilklv Ry = Cilk1~ T.k = Cixae (ﬁd)
The superscript T denotes the transpose. C,;, are the elastic constants which are assumed
to be fully symmetric and positive definite so that the strain energy is positive. t and

(c,d) are the heat eigenvalue with positive imaginary part and the associated generalized
gigenvectors of

kot*+2k.t+k,, =0, Nyg=rtq+y. (3)
where
0 N.|)B i<
V= ““[1 \J{Il} "= {d} (30)
and
(ﬂl )l = /’1(! (I‘:)l = ﬂtl- (3C)

., arc the thermal moduli which arce assumed to be symmetric. In eqn (3a), the symmetry
assumption of &, has been employed. Note that the general solution given in (1) is obtained
under the assumption that the heat eigenvalue and the elasticity eigenvalues are distinet. If
they are repeated, a small perturbation of the material constants can be employed to avoid
the degenerate problem. Otherwise, a modified solution should be applied (Wu, 1984).
However, if the final solutions do not contain the cigenvectors a,, b, and ¢, d, the problems
of repeated eigenvalues can then be avoided, which can usually be achieved through the
use of the identities given in the next subsection.

As shown by Suo (1990a) the analyticity of a function is not affected by the arguments
2o 2= 1,2,3, or z,. Another solution form appropriate for the method of analytic con-
tinuation {Muskhelishvili, 1954) is written as

T=gC+gG) h=—(ky+1hkpn)g"(2) = (ki + Thia) 9" (2),
u = Af(z) +cg(2) + Af(z) +29(), ¢ = Bf(z)+dg(c) + Bf(z) +dg(3), (4a)
where

A=[a, a, a3, B=[b, b, bl ()=[/() f£(z) L. (4b)

and the overbar represents the conjugate of a complex number. Note that the arguments
of g(z) and each component function of f(z) are written as = = x, + px, without referring
to the associated eigenvalues t or p,. Once the solutions of g(=) and f(z) are obtained for a
given boundary value problem, a replacement of -, =y, =, or z; should be made for each
function to calculate ficld quantitics from (1) or (4).

2.2, ldentities
Duec to the orthogonality relation among the eigenvectors &, derived by Stroh (1958),
three real matrices have been introduced as

S=i(2AB"~I), H =2AA", L= -2iBB", ()]

in which i = /-1 is a purc imaginary number and I is the unit matrix. H and L are
symmetric and positive definite and SH. LS, H™'S, SL-"' are anti-symmetric. From the
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above relations. the impedance matrix M (Ingebrigtsen and Tonning. 1969) which has been
used widely for the interface crack problems can be shown to be
M= —iBA"'=H "(I+iS) =(I-iSHH "
M '"=iAB '=L '(I+iS") = 1-iS)IL " (6)
The third equalities in (6) come from the fact that H 'S and SL ' are anti-symmetric.

Hence M is a Hermitian matrix. Another identity related to the thermoelastic properties is
(Hwu, 1990)

Sc+Hd =ic+7f. —Le+S'd =id+7j*% (7a)
where
] (2
ES ;HJ {cos O+tsinth) 'y (do, y,(0) = =N (D) pm()).
l tlx ] ]
7t = ’nJ (cos O+tsin ) 'y (N d0, y.(0) = —Bn() =N () pm(0), (7b)
and
n() = (cos Osin 00)', m(0) = (~sintcosOM'. B=[B, B. B (7¢)

N,(0). i = 1,2, 3 are the generalized forms of N, (Hwu, 1990).

3 THERMOELASTIC COLLINEAR INTERFACE CRACKS

Consider an arbitrary number ol collincar cracks lying along the interface of two
dissimifar anisotropic materials, The materials are assumed to be perfectly bonded at all
points of the interfuce v, = 0 except those lying in the region of cracks L (see Fig. 1), which
are defined by the intervals

with

—r <da,<h <d,<h,. < <q,<h, <.

On the upper and fower surfaces of the cracks, an arbitrary and self-equilibrated loading
and heat flux are specified. From Section 2, we know that the solution to an individual

T2
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S

Fig. 1. Collincar interface cracks.
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problem in two-dimensional anisotropic thermoelasticity can be reduced to finding the
complex functions f and g. which should satisfy the boundary conditions of that problem.
In the case of two different materials. however, the elastic properties are discontinuous across
the bonded line, and a complete solution to the problem requires the knowledge of two
complex function vectors f,, f, and two complex scalar functions g,. g.. Here, the subscripts
| and 2 are used to denote the quantities pertaining to the materials 1 and 2 which are
located on x, >0 (S,) and x, < 0 (S.). respectively. The functions f, g, and f,, g, are
holomorphic in the regions S, and S. respectively. They are sought to satisfy the continuity
of displacement, traction, temperature and heat flux across the bonded portion of the
interface, as well as the prescribed traction and heat flux conditions on the crack portion,
i.e.

U =u ¢, =¢,. T\=T, (h), =) x¢L.
dr=¢ =t (h), =(h). = h, xeL. (8)

The equality of traction continuity comes from the relation d¢p/ds = t where t is the surface
traction on a curve boundary and s is the arc length measured along the curved boundary.
t and / are the prescribed traction and heat flux applied on the upper and lower surfaces
of the cracks. When the points along the crack surfaces are considered, integration of
¢ = ¢, provides ¢, = ¢, since the integration constants can be neglected, which cor-
respond to rigid body motion. Combining this result with the continuity requirements of
traction and heat flux along the bonded portion, we have

¢, =¢.. (I}, = (h);  along the entire interface. )
By introducing a real constant & = ky,(x — ©)/2i, the expression of the heat flux com-
ponent Ay given in (da), can be simplilied as

hy = —ikyg"(2) +ikg"(2). (10)

Using eqn (10), the heat Nux continuity condition (9); leads to
— kg (1) = ikag 5 (x7) = —ikogi(e7) = ikigT (), (1

where xi denote, respectively, the points on the upper and lower surfaces of the cracks.
One of the important properties of holomorphic functions used in the method of analytical
continuation is that if f(z) is holomorphic in S, (or S.), then f(3) is holomorphic in S, (or
S)). From this property and eqn (11), we may introduce a function which is holomorphic
in the entire domain including the interface, i.e.

—ikig1(z) = ik:g5(), z€S.,

e (12)
—ik.g3(z) —ik g (D). z€S,.

g*@c) = {

Since g*(=) is now holomorphic and single-valued in the whole plane including the point at
infinity, by Liouville’s Thecorem we have g*(z) = constant. If the heat flux tends to zero
when |z = oo, g*(2) is then identically zero, i.e.

g* () =0. (13)

If the temperature field also tends to zero as |z| — oo, and the terms corresponding to the
rigid body motion are neglected, combining (12) and (13) we have
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pre— A- J— A'V
G =~ 9. €S G =~ Fgad). €Sy (14)
2 t

Similarly, by applying (4a),. the traction continuity (9), along the entire interface and
the result of (14), the use of the analytical continuation method leads to

f:(:)=B;I[B‘f;(:)"F(d,-}-i.-;la:)g‘(:)]_ :ESI,
= ks
1) =87 BL()+{do+ =8, Jg:(0) | 265, (15)
|

By employing (4a), ;. (14) and (15), the temperature and displacement continuity along
the bonded portion of the interface now provide

O(x7) =0(x7), Y(xv) =¢(x7). x ¢L, (16a)
where
ky
i“}“,’\:’ ()., eS8,
) = ) (16b)
k. .
<l+k‘)!12(~)« ze s,
B.f(5)+ Aoy )
L EE o 3 3 1 €y, ZED,
Y(z) = Kitk, (16¢)
- ky
» * -~ R ., -~ 3.
M* M B:fz(~)+k‘+k:d:+t.‘ ze S,

In the above, M* is the bimaterial matrix defined as

M*=M['+M;'=i(A,B;'=A,B;") = —i(W+iD), (17a)
where

W=SL;'-S,L;', D=L7'+L;" (17b)

The second and third equalities of (17a) come from the identities given in (6). The complex
vectors e, and ¢ are related to the heat ecigenvectors ¢ and d, and are defined as

[iM* '(c*—iM; 'd*) —k.d ],

TR FE
L o
e = g iV @ -imy 13—k, d.]. (18a)
where
C*:kgc;"}‘klé:. d":/\':dl‘*'k]a:. (ISb)

Using the results of (14), (15) and (i6b.c), the prescribed traction and heat flux con-
ditions on the crack portion (8b),, lead to the following Hilbert problems (Muskhelish-
vili, 1954)
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ky+ks
T+ ) = e ),
D)+ MM Y () = Hx ) +0(xi e + 0 (x7 )es, x €L (19)

The solutions to these Hilbert problems are (see Appendix)

oy = k,+k, h(s) ds . .
6"(:) T Xo(z )JXO () +%0(2)Pa(2) (20a)

VO = 52 X2 f NG (0] RO+ e+ )es] ds+ Ko@) pa() (200)

where p,(z) and p,() are arbitrary polynomials with the degree not higher than n, and %,
X,(z) are the basic Plemelj functions defined as,

Xols) = ﬂ (z—a) "(==b)""% Xo(2) = AT(2), (20¢c)
j=1

where
A=[4, 4, 4], re) = <<ﬁ (:—a,-)’“*"-’(:——h,)“->>. (20d)
j=1

The angular bracket (€ )) stands for the diagonal matrix, i.e.
S =diaglfis [ Si]

which will be used throughout this paper, 8, and 4,, a = 1,2, 3, of (20d) are the eigenvalues
and cigenvectors of

(M* 4+ M*)4 = 0. (20e)
The explicit solution for the eigenvalue § has been given by Ting (1986) as

6: = —%+i£:s a= 102a3s (200

where

e,=z~:=-——lnI , 2= —¢ £=0, w=[-itr(WD™")?}"?, (20g)

tr stands for the trace of the matrix. Note that the order of singularity 4, is independent of
the heat conduction coefficients &, and thermal moduli f,, and is the same as those of the
isothermal interface crack problems. The order of singularity related to the heat flux is
—1/2 as shown in (20c¢).

Once we get the solution of 87(z) and ¢'(c) from (20), the complex functions g,(z),
g:(2) and f,(2), (=) can be obtained from (16b, c) with the understanding that the subscript
of = is dropped since the analytical continuation is not affected by different arguments z, or
=,. After the operation of matrices, a replacement of =, or =, z,, 23 should be made for each
function, because the functions g, () and f(z) are required to have the form

9c(2) = gu(2), L(2) = [fl(:l)fz(:l)fS(:l)]Tv k=1,2

which can be seen from the general solution given in (1). This calculation procedure will
be applied throughout this paper. The whole ficld solution can then be found by using eqn
(4). If one is interested in the stresses g, along the interface and the crack opening
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displacements Au. the following results show that they have a simple relation with functions
¥(z) and 0(2). By applving .. = ¢ . (da),. (14). (15) and (16b,c), the stresses o, are
calculated as

T,
Gp =@ = (TN My (v ) —0(x)Me, +e.). x, £L. (21

s

From (4a).. (14, (13) and (16b,c). the crack opening displacements Au can also be
calculated and simplified as

Au=wu(x U7 ) —u{x,.0 ). = —IM¥g(7)—(x ). x 6L, {22

4. EXAMPLES

4.1. Homogeneous mediua

The simplest case of the interface cracks is when the two media are composed of the
same materials, Our results for the thermoclastic interfuce crack problems should there-
fore be checked by this simplest case. Consider an infinite homogencous anisotropic plate
contatning an insulated crack in which the heat is flowing uniformly in the direction of
the positive v,-axis. Due to the lincar property, the principle of superposition can be used
and the problem can be represented as the sum of o uniform heat flux in an uncracked sohd
and corrective problem which is deseribed by

hx,) = —hy =constant, {(v,) =0, n=1 a = -a. b, =ua

Ay=A=A, B, =B, =B ¢, =¢c.=¢, d,=d.=d. k, =k, =k (2})

To find the solution for this corrective problem, the fine integral given in (20a) should be
evaluated first. By residue theory, the integral around a closed contour ¢ shown in Fig, 2
can be calculated as

T hyds e l
(} o = ZR[ Z T X”(,S') = iy VY

Ao SHs ~2) o N

where r, is the residue of the integrand at its singular points within C. The closed contour
Cisthecunionof L', Cy. L . L,, C,. L, C%. The summation of the integrals along L,
and L, vanishes since they have opposite directions and the integrand across this line 1s
continuous, The integrals around the circles Oy and Ci can be proved to be zero when the

Fig. 2. Integration contour.
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radii of the circles C, and C}, tend to zero. By replacing the contour of C,. by Re"™ and
letting R — =0, the integral around C, is found to be

hyds .
e = 27thyiz.
L L=z T

Knowing that x,(z) is the homogeneous solution of the Hilbert problem, i.e. x5 +x¢ =0,

we have
J hods 7'[ ho ds
e Xo@G =2 T las (s—2)

The only pole which has made a contribution to the residues is at s = z, and the residue at
that point is hgxg ' (z). With the above description. we are now in a position to evaluate the
line integral and the final simplified result is

ho ds . < .
= - [ ). 4
JLX(T(S)(S—:) mhoi( \/—.-“) (24a)

After evaluating the linc integral, the arbitrary polynomial
Pi(2) =cotcyz, (24b)

could be determined by the infinity condition and the single-valuedness requirement. If
0°(z) —» 0 as |z| » w0, we have

¢y = 0. (24(:)

The requirement of the single-valuedness condition can be expressed by

J‘_ [0"(x7)=0"(xy)]dx, =0. (24d)

Knowing that \/;i~a3 = i-l\/u":t. for [x,| < « and x, = +0, substitution of (24a—)
and (20a) into (24d) leads to

o =0. (246)

Combining eqns (24a-¢), the final simplified result for §”(2) is

ih,

0”(:) = — ~~/\-_' (| - :_/:—2__:‘—2) (25)

To find the solution for §’(z), we first calculate the terms related to 0(z). Integrating
0"(z) given in (25) with the assumption that the temperature field tends to zero as |z| — 0,
and substituting the identities (6) and (7a) into (18) with the homogeneous condition
(23);.4. we have

h
O(s*)e, +0' (s )e, = — —li"f Re {7%}.

The evaluation of the line integral and the determination of the arbitrary polynomial are
similar to those described in eqns (24a—€). The result is
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5

.lJ b
=)

h 2:1 gt

V() == | 25— === |Re {71}. (26)

T4k s
N

The solutions of the complex functions g(z} and f(z) are obtained from (16b,c) with the

aid of {23),, and (7a), as

9() = 18(). f(z) = 1B~ {2Y () - 0(:)[d~i Re (79)];. (7N

Note again that the subscript of = is dropped before the multiplication of matrices and a
replacement of =, =, should be made for each component function after the matrix product.
By this calculation procedure, the explicit expressions for the complex functions g(z) and
f(z) can be obtained from (25)-(27) as

ihy
9() = = r ==

() "'” (i mny/zi=aT)B

:fz‘,a ——————————

— (log (2, + /7 —a?))) B [d—i Re (7%)]. (28)

which can be proved to be identical to those presented in Hwu (1990) through the use of
identities given in (5) and (7a). The whole field solutions for the temperature, heat flux,
displacements and stresses can then be found by using eqn (4). The stresses o,, ahead of
the crack tip along the x-axis are calculated by (21) with 0 and ¢ given in (25) and (26)
as

hy a2
G =
Y
A \/t( “(I

Same as the isothermal problems, the above solution shows that the stresses are singular
near the crack tip. With the usual definition, the stress intensity factors are given by

Re {73}. (29a)

K“
h :
K, hm J2nlx, —a)o,, = f % 2 Re {73}. (29b)

Kl(l

Similarly, the crack opening displacements Au are obtained from (22) and (26) as
+ - hO 3 g -1 ~%) )
Au=u(x,,0%)—u(x,,07) =7 a*—xiL™ ' Re {7%}. (29¢)

The validity of this solution related to the assumption of a fully open crack has been
discussed by Hwu (1990). By applying the virtual crack closure method (Irwin, 1957), the
total strain energy release rate G can then be calculated as

nhia®

il TL-'Re{f$). (29

Aa—0 7A

G = lim —WJ u (x—Aa)e,(x)dx =

The solutions given in eqns (29a~d) are also exactly the same as those presented in Hwu
(1990).
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4.2. Bimaterials

Consider an interface crack located on a, = —a, b, = a, subjected to uniform heat
flux A = —h, and uniform loading t = —t,. To find the solution of & () from (20a), a
similar approach to that in Section 4.1 can be employed and the result is

0() = —ihy(z— /2 —a’). (30a)
where
hotk, +k»)
«_ "0\ TR27
h = TN (30b)

With the aid of residue theory, the following line integrals which are useful for the calculation
of ¥’(-) can be obtained in a similar manner to those described in Section 4.1

1 _ 1 . .
2mf =X ) "°ds"<<x.(:) : >>'
.J.— [\ ] 'erds = << ‘_ z(z+2ig,a) — a—z (! +4ez)]>>e“’
27 ] k x’(:) “ e gl 2 2 k

e [X+ ®] 'e,,dv-—<<—————-‘2z

[2(z+2ie.a) —a*(1 +2e’)]>>

2m X:(2)
(3la)
where
th=A"I+M* 'M*) " 'ty, el =A"'"(I+M* ‘M*) e, k=1,2,
() = ———':;— (%) G1b)

Applying the results of (30) and (31), the arbitrary polynomial p,(z) in (20b) can now be
determined by the infinity condition,

¥ (z) -0, as |z| - o0,

and the single-valuedness requirement,
J V(1) — ()] dx, = 0,
The result is
pa(2) = —1h3{—:e +{{4ie, az——az(1+4ez)>)e§} 32)

In the derivation of (32) the following integrals calculated by the residue theory have been
used :
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f“ 1 (a - 1)“' dr n N ! (a - t)'" dre = inae,
— | — = —— — | dr= — .,
.,‘,\/a:_,: a+t cosh e, | J\;u:_,: a+i cosh ne,
o ’u—t\)'”d na:
ST - =
"u\"a:—t: a+i, 2 cosh ne,

Combining the results of (30)—(32). the finul simplified solution for y'(z) is found to be

V(2) = — AT, +A5 (et +J-(2)eh)). (33a)

where

Jo(2) = K=+ 2igga) . (2))). o) = <<:—\/‘_::—az—ﬁazx,(:)»,

J.(2) =+ \w'f:Z —di— Q27— 3a).(2))D. (33b)

The solutions for the isothermal interface crack problems are found by letting 4§ = 0, which
can be proved to be identical to those presented in Wu (1990) and Suo (1990a). The fracture
parameters such as the stress intensity factors, crack opening displacements and the energy
release rate can then be obtained from this solution and the proper definition for the
interface crack problems (Wu, 1990 ; Suo, 1990a: Hwu, 1991).

5. CONCLUSIONS

A gencral solution for the thermoclastic collinear interface cricks between dissimilar
anisotropic media has been obtained by applying the extended version of Stroh’s formalism
and a special technique of analytical continuation. The general solution is valid when the
heat eigenvalue and the clasticrty cigenvalues are distinct. For the case that they are repeated,
a small perturbation of the material constants can be employed to avoid the degenerate
problem. Otherwise, a modified solution should be developed. For the solutions in which
the cigenvectors have been replaced by the fundamental matrices such as S, H, L and 77,
7% through the use of identities, the problems of repeated eigenvalues disappear, which has
been demonstrated in the case of homogencous media.
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APPENDIX: SOLUTIONS TO THE HILBERT PROBLEM OF VECTOR FORM
The Hilbert problem is usually expressed in the form of scalar functions,
Frinn—gF (1) = f{5) onl, exceptat the ends, {AD)

where g in general is a complex constant. The solution to this problem with ¢ # [ has been shown in Muskhelishvili
(F954) as

ey X(l(l) i f(l)dl . . 5
,(-, B Zl!i J;x‘m)““:) +X(|(-)[’~(~) (A-)

where

Kolzd = [z =) 7z=b) ",

y 1

v = (1/2r0) In (g) and p,(2) is an arbitrary polynomial with the degree not higher than n, For g = 1, the solution
s

1 (rde
oy = “‘:J; {7('::- +p.(2) (A})

To find the solution for the vector form expression,
Y + M M, ) = B x, on £ except at the ends, (A4

a similar approach can be employed. Firstly, a solution will be studicd which may have a pole of arbitrary order
at infinity, and we begin with the homogeneous problem,

O HR M) =0, x el (AS)

A particulur solution ¢, of the problem will be sought in the form
gzt = [ z~a) T =—hYA (A6)
-1

where d is a complex constant and 4 is a complex constant vector. The function ¢i,(z) is holomorphic in the entire
planc cut along L. it a definite branch of this function is sclected. 1t is readily veritied by an investigation of the
vartation in the argument of 2 —~q, or 2 b, when = describes a closed path beginning at point x, of the arc g, b,
and leading, without intersecting L. from the left side of g, b, around the end 4, to the right side of the arc or
around the end 4, that

Walxy) =iy ). (AT)

Hence, #;,(2) will satisfy the boundary condition (AS), provided
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(e 1N M)A =0,
or

M* =™ N )i =0 (AX)

The explicit solution for the eigenvalue ¢ has been given by Ting (1986) as

S, = —iwit, O.= —l—ig, b, =~ (A9)

where

| 1+ [N
E=—In——. w=[-1tr(WD ')’]'",

n 1w

tr stands for the trace of the matrix. Thus, a particular solution y,(z) of the homogeneous problem has been
found: it is given by (A6) with J and 4 determined by (A8). Since there are three eigenvalues from (AR), a linear
combination of these particular solutions will still be one of the particular solutions. i.e.

¥io(2) = Xo(xo)pa. (ALY
where

Xu(z) = AT(2), (ALD

and
A=A A A Iz = << [1¢z-a) "“""(:—h,)“v>>. (A1)

Po is a coetlicient vector. This particular solution does not vanish anywhere in the finite part of the plane and it
is unbounded like |z —a,] "" *and |z —5,] ' near the ends ¢, and b,. respectively.

The most general solution of the homogeneous problem will now be found which has a pole at infinity. For
this purpose it will be noted that ¢(z) = X,(z)p,. being a solution of the homogencous problem, satisfics the
condition

Xopo+M* M*X,p, =0, x,€l.
Hence

MM s —XJ N L (A13)
where X is the simplificd notation for X,(x7). By applying (A13}), eqn (AS) becomes

o] ' (e =IXg) 'ix) =00 xel,
or
Yolx7)=Yulxy) =0, x el (Ald)
where ¥.(z) denotes the sectionally holomorphic function [X,(2)] “'¢'(z). Tt follows from (Al4) that ¢.(z) is
holomorphic in the entire plane, except at the point = = ¥, provided it is given suitable values on L. Further,

since y.(z) can only have a pole at infinity, it must, by the generalized Liouville theorem, be a polynomial. Thus,
the most general solution of the homogencous problem is given by

P (z) = Xp(2)pa(2). (ALS)
where p,(z) is an arbitrary polynomial vector. If it is desired to obtain a solution which is alse holomorphic at
infinity, it must be assumed that the degree of the polynomial p,(z) does not exceed n. This follows from the
behavior of X,(2) at infinity as given in (All).

Next consider the non-homogencous problem, Using (A13). the boundary condition (A4) may be written as
Kol "G =INg] i) = IXg] 'L vel
or
V(i) —¥e(xi) = [Xg]7'L xiel, (Al6)

where ¥.(2) = [Xo(2)] '¥'(z). Each component of eqn (A16) is in the form of (Al) with ¢ = 1. hence. by (A3)
we have

l l
V) =5= -\'u(:)j == [Xg ()] 'U5) ds+ Xo(2)pa(2) (A1T)
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where p,(z) is an arbitrary polynomial vector with the degree not higher than .



