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Abstract- By applying the e:<tendl.-d version of Stroh's formalism and a special technique of
analytical continuation. a gem:ral solution for the thermoelastic collinear interface cracks between
dissimilar anisotropic media has !leen obtained in this paper. Special notitkation and e:<amples are
given for the application of the tinal results to the whole field solutions of the temperature. heat
flu:<. displacements and stresses. The e:<plicit c:<pressions for the interface stresses and crack opening
displacements arc also provided. B'lsed upon this general solution. two SpeCkll e:<amples of single
cnlck problems are solved e:<plicitly. One is homogeneous media. the other is anisotropic bimaterials.
The former is studied for the purpose of pre5Cnting the detailed cakulation. verifying the general
solution and discussing the validity of the solution. A closed form solution is obtained for the latter
c,lse su!ljectcd to a unifi.'rm heat l1u:< ,tnd loading.

I. INTROOUCTION

One of the most frequently encountered problems in composite laminates is interface
cracking. somdimes also known .IS delamination. Delamin'ltions in layered composite
materials may occur due to a variety of reasons. such as low energy impad. manufacturing
defects or high stress com;entrations at geometry or material discontinuities (Kardomateas
and Schmueser. 1(88). Due to recent aero<:;pace and commercial .tpplications. laminated
composites arc experiencing an increased utilization in high temperature environments.

A quantitative assessment of the ellcct of realistic delaminations on the strength and
lifetime ofa laminate is dillicult. Consequently. analytical efrorts to date have only attempted
to quantify the eUcet of idealized ddaminations. Williams (I(59) discovered the so-c.tlled
oscillatory ncar tip behavior for an interl~lce crack between two isotropic materials. Since
then. many authors have discussed the interl~lce crack problems such ,IS England (1965).
Erdogan (1965). Rice (1988) and Suo (1989) for isotropic media; and Gotoh (1967).
Clements (1971). Willis (1971). Ting (19X6). Hassani and Qu (1989). Qu and Bassani (1989).
Suo (Il)lJ()a). Wu (19lJO). Gao ('/ ill. (19lJ:!) and I-Iwu (1991) for anisotropic media. Bya
skill of orthotropy rescaling (Suo. 1990b) which reduces plane elasticity problems for
orthotropic materials to equivalent problems for materials with cubic symmetry. certain
interface crack solutions for orthotropic materials may also be obtained directly from
isotropic solutions. In spite of the vast resources for the interface crack problems. very few
published analytical studies arc available for the thermoelastic interllice crack problems.
The steady state thermoel'lstic problems of interface cracks between dissimilar isotropic
media have been studied by Erdogan (1965). Barber and Comninou (1982. 1(83). Martin­
Moran ('/ al. (1983) and Sumi and Ueda (1990). As for the cracks between dissimilar
anisotropic media. solutions were presell!cd by Clements (1983) through the usc of the
complex variable method. Due to the lack of identities among the thermoelastic constants
developed in later years (Ting. 1988; Hwu. 1990). the solutions provided by Clements
(1983) arc complicated. Moreover. without further notification those solutions can only be
applied to interface. not the full field domain.

In this paper, we consider an arbitrary number of collinear cracks lying along the
interf~lee subjected to an arbitmry and self-equilibrated loading and heat flux on the upper
and lower surfaces of the er'lcks. The materials arc assumed to be perfectly bonded at all
points except those lying in the region ofcracks. To solve this problem. an extended version
(Hwu. 1990) of Stroh's formalism (Stroh. 1958) for plane anisotropic thermoclasticity is
applied. A special technique of analytical continuation (Muskhclishvili. 1(54) which is
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similar to the one proposed by Suo (1990a). is also developed to consider the misfit of
material constants along the interface. In Hwu's (1990) paper. the cracb are embedded in
the homogeneous anisotropic media. While in Suo's (1990a) paper. no thermal effect is
I.:onsidered for the cracks lying along the interface of two dissimilar anisotropic media. The
combination of the extended version of Stroh's formalism with the method of analytical
continuation leads the problems of thermoelastic interface cracks to a Hilbert problem of
ve\.'tor form. A derivation of the general solution to the vector form Hilbert problem is
provided in this paper. An explicit closed form solution for the thermoelastic intaface crack
problems is therefore obtained. which is expressed in complex matrix notation.

Special notification and examples are given for the application of the final results to
the whole Ikld solutions of temperature. heat flux, displacements and stresses, The explicit
expressions for the interface stresses and crack opening displacements are also provided.
The solutions are valid only when the assumption of fully open crack is not violated. If this
is violated, a partial contact crack may be assumed, which is similar to the problems
discussed by Martin-Moran c{ af. (1983) and Barber and Comninou (1983). Ting (1986)
showed that if the negative imaginary part W of the bimaterial matrix :\1* (the definition
I.:an be found in this paper) is identil.:al to zero. there will be no interpenetration problem
for interfal.:e n'Kks. However, it has been argued (Rice, 1988) that the solutions can still be
used to I.:haracterize the interface fracture process silKe the contact zone size is f()und to be
extremely small l\')r a hroad range of himaterial and loading configurations of practical
importance. I-klll.'e. in this paper no detailed discussion ahout the validity of fully open
crack assumption is provided. The main concern is devoted to the derivation of the general
solution to the problems of thermoelastic interface collinear cracks without any restriction
to the material properties of anisotropic media.

Two typical examples are solved explicitly, The simplest case when the two media arc
\.·omposed of the same material is studied for the purpose of presenting the detailed cal­
culation and verifying the gencr~11 solutions. A closed form solution is obtained for the case
of billlaterial illlerface cracks subjected to uniform heat nux and loading.

~ PLANE ANISOTROPIC TIIERMOELASTICITY

1.1. Genera! sO!lIliollS
Based upon Stroh's l\')rmalism (Stroh. 1958) in anisotropic elasticity. a simple and

(om pact version of general solutions for the uncoupled steady-state plane anisotropic
tll\:rmoelastieity has been presented by II wu (1990) as

T=2Re{.(/(:,)}. h,= -2 Re{(k,,+rkil)g"(:,l:. U=2Re{± aJ,(:,)+CH(:,)}.
1'- I

where

q, = 2 Re {± b,j;(:,)+dl/(;,)}. (1',1
, .\

(I a)

(I b)

(XI. xJ is a fixed rectangular coordinate system. Re stands for the n:al part of a complex
number. The prime n denotes differentiation with respect to its argument. A comma stands
for dilferentiation. T./r" u, q, and (J'i represent. respectively. the temperature. heat flux.
displacements. stress functions and stresses. k ii are the heat conduction coefficients. J;(=.).
1. =: 1.1.3 and g(:,) are arbitrary functions with complex arguments :, and :,. respectively.
1', and (a,. b,) are the elasticity eigenvalues with positive imaginary parts and the associated
eigenvectors of

where

N~ = I'~. (2a)
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(:!b)

and

(:!c)

(:!d)

The superscript T denotes the transpose. CUkl are the elastic constants which are assumed
to be fully symmetric and positive definite so that the strain energy is positive. rand
(c, d) are the heat eigenvalue with positive imaginary part and the associated generalized
eigenvectors of

where

and

[0 NzJ {fJl} {c}}' = - I NT fJ z ' ,,= d •

(3a)

(3b)

(3c)

/1'1 arc the thermal moduli which arc assumed to be symmetric. In cqn (3a). the symmetry
assumption ofk'l has heen employed. Note that the general solution given in (I) is obtained
under the assumption that the heat eigenvalue ,md the elasticity eigenvalues arc distinct. If
they arc repeated. a small pcrturh,ltion of the material constants can be employed to avoid
the degenerate problem. Otherwise. a modilied solution should be applied (Wu. 19X-l).
However. if the linal solutions do not contain the eigenvectors a" b, and c. d. the problems
of repeated eigenvalues can then be avoided. which can usually be ,Ichieved through the
use of the identities given in the next subsection.

As shown by Suo (1990a) the analyticity of a function is not affected by thc arguments
: •• (X = 1.2.3. or :\. Another solution form appropriate for the method of analytic con­
tinuation (Muskhelishvili. 1954) is written as

T =g'(:) +g'(:). hi = - (kil + rk12 )g"(:) - (kit + fkdg"(:).

u = Af(:)+cg(:)+Af(:)+cg(:). tP = Bf(:)+dg(=) + 9f(=) +ag(=), (4a)

where

and the overbar represents the conjugate of a complex number. Note that the arguments
of g(=) and each component function of f(:) are written as == x I +px~ without referring
to the associated eigenvalues r or P•. Once the solutions ofg(=) and f(=) are obtained for a
given boundary value problem. a replacement of =\. :1. :2 or:) should bc made for each
function to calculate field quantities from (I) or (4).

2.2. fdentilie's
Due to the orthogonality relation among the eigenvectors~.derived by Stroh (1958).

three real m.ttrices have been introduced as

S = i(2AB T -I). H = 2iAAT. L = - 2iBBT, (5)

in which i = ye=t is a pure imaginary number and I is the unit matrix. Hand L are
symmetric and positive definite and SH. LS, H- IS. SL - 1 are anti-symmetric. From the



20S0 C. H~l

above relations. the impedance matrix M (lngebrigtsen and Tonning. 1969) which has been
used widely for the interface crack problems can be shown to be

:\ I = - iBA - I = H - I(I + is) = (I - is r )H I

M 1 = iAB 1 = L '(I+iS r ) == (I-iS)L I. (6)

The third equalities in (6) come from the fact that H IS and SL I are anti-symmetric.
Hence M is a Hermitian matrix. Another identity related to the thermoelastic properties is
(Hwu. 1990)

where

Sc+Hd = ic+Yf. -Lc+Srd = id+Y!.

if = ~l J~'" (cos O+r sin 0) lyl(O)dO. YI(O) = -N,(O)llm(O).
_IT tI

(7a)

and

i! =..,1 J' '" (cos 0 + r sin 0) I Y,(II) dO. }', (tl) = -lln(O) - Nl(O)/lm( 0). (7b)
_IT tI

n(tl) = (cos 0 sin (0)" Ill(O) = (- sin 0 cos (0) I. II = [/1 1 II, II.). (7c)

N,(O). i = 1.2.3 arc the generalized forms ofN, (lIwu. 1(1)0).

l TIIFRMOFLASTIC COLLINFAR INTt:lU:,\("!: CRACKS

Consider an arbitrary number of collinear cracks lying along the interl~lce of two
dissimilar anisotropic materials. The materials arc assumed to be perfectly bonded at all
points of the interface x, = 0 except those lying in the region of cracks L (sec Fig. I), which
arc defined by the intervals

ii, ~XI ~h,. j= 1.2..... /1.

with

On the upper and lower surLlces of the cracks. an arbitrary and self-equilibrated loading
and heat /lux arc specified. From Section 2, we know that the solution to an individual

Xz

s,

____- ---..L~:--...~----X,
a, b, a. b. ... a. b• ... a. b.

s,
Fig. I. Collincar intcrfacc cracks.
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problem in two-dimensional anisotropic thermoelasticity can be reduced to finding the
complex functions f and 9. which should satisfy the boundary conditions of that problem.
In the case of two different materials. however. the elastic properties are discontinuous across
the bonded line. and a complete solution to the problem requires the knowledge of two
complex function vectors flo f: and two complex scalar functions 9,. 9:. Here. the subscripts
I and::! are used to denote the quantities pertaining to the materials I and:! which are
located on x: > 0 (51) and x: < 0 (5:). respectively. The functions f l .9' and f:,9: are
holomorphic in the regions 51 and S:. respectively. They are sought to satisfy the continuity
of displacement. traction. temperature and heat flux across the bonded portion of the
interface. as well as the prescribed traction and heat flux conditions on the crack portion.
i.e.

u, = u:- tPl = tP:. T I = T:. (11:>1 = (lI:b x, !fL.

tP'l = tP': = f. (II:) 1= (II:): = Ii. x. E L. (8)

The equality of traction continuity comes from the relation otP/os = t where t is the surface
traction on a curve boundary and s is the arc length measured along the curved boundary.
f and Ii are the prescribed traction and heat flux applied on the upper and lower surfaces
of the cracks. When the points along the crack surfaces are considered, integration of
tP'l = tP': provides tP I = tP: since the integration constants can be neglected. which cor­
respond to rigid body motion. Combining this result with the continuity requirements of
traction and heat flux along the bonded portion. we have

(9)

By introducing a real constant k = k ::(r - f)/2i, the expression of the heat flux com­
ponent II: given in (441): can be simplified 'IS

II: = -ikg"(;)+iki/(;).

Using eqn (10), the heat flux continuity condition (9h leads to

(10)

( II)

where xf denote. respectively. the points on the upper and lower surfaces of the cracks.
One of the important properties of holomorphic functions used in the method of analytical
continuation is that iff(;) is holomorphic in 51 (or S:), then f(f) is holomorphic in S: (or
51)' From this property and eqn (II). we may introduce a function which is holomorphic
in the entire domain including the interface. i.e.

( 12)

Since g.(;) is now holomorphic and single-valued in the whole plane including the point at
infinity, by Liouville's Theorem we have g.(;) == constant. If the heat flux tends to zero
when 1;1 ->x;, ,q.(:) is then identically zero. i.e.

( 13)

If the temperature field also tends to zero as 1;1 -> 00. and the terms corresponding to the
rigid body motion are neglected. combining (12) and (13) we have
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(14)

Similarly. by applying (4a)~. the traction continuity (9)1 along the entire interface and
the result of (14). the use of the analytical continuation method leads to

1~(=) = B~ {Btf,(=)+ (d l + ~; a~)gl(=)J. =ES 1•

1t(=) = i1i- { B~f~(=) + (de +~ aI )g~(=)J. =E S~. (15)

By employing (4a)u. (14) and (15). the temperature and displacement continuity along
the bonded portion of the interface now provide

O(xt) = O(x,). "'(xt) = "'(x,). XI $ L.

where

In the above. M* is the bimaterial matrix defined as

where

( 16a)

( 16b)

( 16c)

(17a)

(17b)

The second and third equalities of (17a) come from the identities given in (6). The complex
vectors eland el are related to the heat eigenvectors c and d. and are defined as

(18a)

where

(18b)

Using the results of (14). (15) and (16b.c). the prescribed traction and heat flux con­
ditions on the crack portion (8b)1.l lead to the following Hilbert problems (Muskhelish­
viIi. 1954)
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The solutions to these Hilbert problems are (see Appendix)

k , +k, i h(s) ds
0"(:) =.., k k- Xo(:) +( )( __) +Xo(:)P.(:)

~1t I ~ L Xo S S -

(20a)

""(:) = _I. Xo(:) [ _1_ [Xt (s)] - I [l(s) +O'(s+ )el +O'(s-)e~]ds+ Xo(:)P.(:) (20b)
2m 1s-:

where P.(:) and P.(:) are arbitrary polynomials with the degrl:e not higher than n, and XO.
Xo(:) are the basic Plemelj functions defined as•

•
Xo(:) = n (:-a;>-II~(:-b;>-1/2. Xo(:) = Af(:).

i~ I

where

(2Oc)

(2Od)

The angular bracket << >>stands for the diagonal matrix, i.e.

«.r,» = diag (fl' J~, fd

which will be used throughout this paper. (5, and 1." 0( = 1,2,3. of (20d) are the eigenvalues
and eigenvectors of

The explicit solution for the eigenvalue <5 has been given by Ting (1986) as

<5, = -!+ie" 0( = 1.2.3.

where

(20e)

(20f)

tr stands for the trace of the matrix. Note that the order of singularity <5, is independent of
the heat conduction coefficients k'j and thermal moduli P,j' and is the same as those of the
isothermal interface crack problems. The order of singularity related to the heat flux is
- 1/2 as shown in (20c).

Once we get the solution of 0"(:) and ""(:) from (20), the complex functions 9.(=).
9~(:) and f.(:), f 2(:) can be obtained from (16b. c) with the understanding that the subscript
of: is dropped since the analytical continuation is not affected by different arguments z\ or
:,. After the operation of matrices. a replacement of =1 or =" z~. =) should be made for each
function, because the functions 9k(=) and fk (=) are required to have the form

which can be seen from the general solution given in (I). This calculation procedure will
be applied throughout this paper. The whole field solution can then be found by using eqn
(4). If one is interested in the stresses (1;2 along the interface and the crack opening
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displacements <iu. the following results show that they have a simple relation with functions
t/!(::) and 0(::). By applying a: = (P.I' Ha)J' (I·H. (\5) and (16b.cI. the stresses (1,: are
calculated as

{

(1 1:1
(1:: = 1" = (1+\1* '\1*,t/!'(.\·I)-lnxl)(cl +c:).

a,:

(.?I)

From (-Ja),. (14). (15) and (16b.c). the crack opening displacements ~u can also be
calculated and simplified as

(22)

-I. EXAMPLES

4.1. /{omoyclII!o/lS media

The simplest case of the interface cracks is when the two media arc composed of the
same materials. Our results for the thermodastic interface crack problems should there­
fore be checked by this simplest cast:. Consider an inlinite homogeneous anisotropic plate
containing an insulated cr;\ck in which the heat is flowing uniformly in the direction of
the positive x~-a\is. Due to tht: linear property. the principle of superposition can be used
and the prohlell1 can he repn.:sented as the sum of a uniform heat !lux in an uncracked solid
and corrective problem whid\ is dcscrihcd by

';(xl)=-It,,=constan!, 1(\'1)=11. 1/=1. (/1= (/. "lc=iI.

AI=A:=A. BI,~H:=H. CI=C~=C. dl=d~=d. kl=k:=k. (23)

To lind the solution for this corrective problem. the line intq:ral given in (20a) should be
evaluated IiI'S!. By residuc theory. the integral around a dosed contour C shown in Fig. 2
can be calculated as

t It''l.1s ., . .;;.
l. = _lrl L.. r,.

X" (s)(s -::, A I
x,,(.I') =

where r, is the residue of the integrand at its singular points within C. The closed contour
C is the union of L '. C". L . L I. C f' C I • C;). The summation of the integrals along L I

and L'I vanishes since they have opposite directions and the integrand across this line is
continuous. The integrals around the cirdes C" and C;, can be proved to be lero when the

c;

Fig. ' Integration contour.

c. c-
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radii of the circles Co and C~ tend to zero. By replacing the contour of ex; by Rei. and
letting R ..... ~. the integral around C ~ is found to be

i hods 2 h .---- = 1[ 01=.
c, Xo(s)(s-=)

Knowing that Xo(=) is the homogeneous solution of the Hilbert problem, i.e. X6 + Xo = O.
we have

The only pole which has made a contribution to the residues is at s = z, and the residue at
that point is hoXo I (=). With the above description. we are now in a position to evaluate the
line integral and the final simplified result is

i hods '(~)-+----_- = -1[hol =-"';=--0" .
L XO (s)(s-~)

After evaluating the line integral. the arbitrary polynomial

(24a)

(24b)

could be determined by the infinity condition and the single-valuedness requirement. If
0"(=) ..... 0 as 1=1 ..... 00, we have

("I = o.

The requirement of the single-valuedness condition can be expressed by

(24c)

(24d)

Knowing that J-;i_ 0 2 = ±iJ,~i--.;f for Ix" < 1I and X2 = ±O. substitution of (24a~)
and (20a) into (24d) leads to

Co = o.

Combining eqns (24a-e), the final simplified result for 0"(=) is

" ihu
( =)o (=) = ---- I - .

k f ' ,...; =- -0"

(24e)

(25)

To find the solution for !/I'(=). we first calculate the terms related to 0'(=). Integrating
0"(=) given in (25) with the assumption that the temperature field tends to zero as 1=1 ..... 00,

and substituting the identities (6) and (7a) into (18) with the homogeneous condition
(23)J.4' we have

The evaluation of the line integral and the determination of the arbitrary polynomial are
similar to those described in eqns (24a-e). The result is
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h [ 2:
2
_a

2
]

""(:) = - 4~ 2:- r:c:;;: Re {j!}.
v-

(26)

The solutions of the complex functionsg(:) and f(:) are obtained from (16b,c) with the
aid of (23h4 and (7a): as

g(:) = W(:), f(=) = !B- , P"'(=) - o(=)[d - i Re (j!)]). (27)

Note again that the subscript of =is dropped before the multiplication of matrices and a
replacement of =":x should be made for each component function after the matrix product.
By this calculation procedure, the explicit expressions for the complex functions g(:) and
f(=) can be obtained from (25)-(27) as

g( -) _ iho f_2 _ ~a:+a210g(- + ~a2)\• - - 4k 'l-' -., v''':, - U -, v'':, - U J.

ih J---------_ _ n _1 ... _1 ~ -- 1
f(_) - 4k «-. -·x -. -a»8 d

which can be proved to be identical to those presented in Hwu (1990) through the usc of
identities given in (5) and (7a). The whole field solutions for the temperature. heat flux.
displacements und stresses cun then be found by using eqn (4). The stresses a,2 ahead of
the crack tip along the x ,-axis ure calculated by (21) with 0 und '" given in (25) and (26)
as

(29a)

Same as the isothermal problems. the above solution shows that the stresses arc singular
near the crack tip. With the usual definition. the stress intensity factors are given by

Similarly. the crack opening displacements Au are obtained from (22) and (26) as

( 0+ ) ( 0- ) ho ~L- I R {-.,Au = u x,. - u X I • = k x I v' a - x I e '12 I .

(29b)

(29c)

The validity of this solution related to the assumption of a fully open crack has been
discussed by Hwu (1990). By applying the virtual crack closure method (Irwin. 1957), the
total strain energy release rate G can then be calculated as

I 1<\" h' )
1t jia •• T I '.1

G = lim -- u,(x-Aa)ai2(x)dx = 8k 2 Re {Y2} L- Re {Y21'
<\,,-02Aa 0

(29d)

The solutions given in eqns (29a-<1) are also exactly the same as those presented in Hwu
(1990).
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4.2. Bimaterials
Consider an interface crack located on a. = -0, b l = a, subjected to uniform heat

flux Ii = -ho and uniform loading t = -to. To find the solution of in:) from (20a), a
similar approach to that in Section 4.1 can be employed and the result is

where

in:) = -ih~(:-J:2 _a2), (30a)

(30b)

With the aid of residue theory, the following line integrals which are useful for the calculation
of 11/ (=) can be obtained in a similar manner to those described in Section 4.1 ;

2~ils~=[xt(S)]-'tods= ((l~~=) -(z+2i6.a») )t~,

I ri~ + I ((~ . , 2 )) •21til s-z [Xo (s)]- ek ds = X.(z) -[z(z+2t6.a)-a-(1+26.)] eb

(3Ia)

where

I (z-a)"..
X.(z) = - .

J:2 _a2 z+a (31 b)

Applying the results of (30) and (31), the arbitrary polynomial P.(:) in (20b) can now be
determined by the infinity condition,

11/(:) -+ 0, as 1:1 -+ 00,

and the single-valuedness requirement,

fu [I/t'(xt}-II/(xj")]dx, = O.

The result is

(32)

In the derivation of (32) the following integrals calculated by the residue theory have been
used:
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fu I (a - ()'" n:
-u la:-t: a+t d(=coSh;r.,

'"

IJ ( (a - ()". - 2irrac,
" u -/a:-(: a+t dt = coshn:c,'

'"

Combining the results of (30)-(32). the final simplified solution for y,'(::) is found to be

where

J u(::) = «1-(::+2i£ua)X,(::)). J 1(::) = «::-",/:::-a:-1a:x,(::»).

J:(::) = «::+J;:_-(~~-(2:::-~a:)x,(::»).

(33a)

(33b)

The solutions for the isothermal interface crack problems are found by letting h~ = O. which
can be proved to be identical to those presented in Wu (1990) and Suo (199041). The fracture
parameters such as the stress intensity factors. crack opening displacements and the energy
release rate can then be obtained from this solution and the proper definition for the
interface crack problems (Wu. 1990; Suo, 1990a: Hwu. 1991).

5. CONCLUSIONS

A general solution for the thermoelastic collinear intcrface cracks between dissimilar
anisotropic media has becn obtained by applying the cxtended version of Stroh's formalism
and a special technique of analytical continuation. The general solution is valid when the
heat eigenvalue and the elasticity eigenvalues arc distinct. For the case that they arc repeated.
a small perturbation of the material constants can be employed to avoid the degenerate
problem. Otherwise. a modified solution should be developed. For the solutions in which
the eigenvectors have been n.:placed by the fundamental matrices such as S. II, Land ii.
i! through the use of identities. the problems of repealed eigenvalues disappear, which has
been demonstrated in the case of homogeneous mcdia.
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APPENDIX: SOLUTIONS TO THE HILBERT PROBLEM OF VECTOR FORM

The I hlhert prohlem is usually e,pressed in the form of scalar fum:ti\lns.

F' (/) -.(IF (t) = lU) on 1.. except ;It the ends. (AI)

wl1l're.tl illl1eneral is a compie' (·(lOstan!. The solution to this prohlem with.Q f: I has heen shown in Muskhelishvili
(Itl~4) as

where

. X,,(:) flU) dt
/.(:) ~ ~. --II')( _) +X,,(:)I'.(:)

_/[1 / X" t 1·-_

.
x,,(:) '" n(:-11,) <'(:_1>,)' '.

,- ,

(A2)

;' ~ ( 1/2/[1) In C(/) and ".(:) is an arhitrary polynomial with the dcgrcc not higher than n. For.Q = I. the solution
IS

(AJl

To lind th... solution for the vector form e.,pression.

(A4)

a similar approach can b.: employed. Firstly. a solution will b.: studied which may have a pole of arhitrary order
at infinity, and we b.:gin with the homogeneous prnhlem.

A particular solution tjI:, of thc prnhlcm will he sought in the form

.
tjI;,(:) = I r(:-u,)P ··"(:-h,)".l..

,- I

(AS)

(A6)

where ,) is a complex constant and .l. is a eomple, Cllnst,lOt V~'Ctllr. Thc function "':,(:) is holomoq,hic in the entire
pl'lOe cut along L. if a definite bmnch of this function is sek'Cted. It is readily verified by itn investigation of the
variation in the argument of: - <I, or : - h,. when: describ.:s a dosed path heginning at point x, of the are a h
and leading. without intersecting 1.. from the left side of <I,", around the end a, to the right side of the arc '0:
around the end hi' that

(A7)

Hence. tjI;,(:) will satisfy the houndary condition (A5). prnvided
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or

C. HWl'

(\1' -e'"'' :\1°)). = 0 (AX)

The explicit solution for the eigenvalue <5 has been given by Ting (IIJ86) as

where

,i, = - ~-u;.
,

- ~. (A9)

I I-w
r.=-In---. ")=[-~tr(WO ')']".

:!Tt 1-(1)

tr stands for the trace of the matrix, Thus. a particular solution "',,(:) of the homogeneous problem has been
found: it is given by (A6) with <5 and A determined bv (AS), Since there are three eigenvalues from (A8). a linear
combination of these particular solutions will still be one of the particular solutions. i,e,

where

and

,\ = (A, )., J.d.

"':,(:) = X,,(x)Pn. (AIO)

(All)

(AI2)

p" is a coellicient vector. This particular solution docs not vanish anywhere in the tinite part of the plane and it
is unbounded like 1:_(/,1" 2 and 1:-n,I" 2 ncar the ends (/, and n,. resp~"Ctivcly.

The most general solution of the homogeneous pn,blem will now be found which has a pole at infinity. For
this purpose it will be noted that "';,(:) = Xn(:)p". bemg a solution of the homogeneous problem. satisfies the
condition

X,:p,,+'lo '\IOX"p" =n. x,EL.

Hence

:\1° ':\10 ~ -X,:[X"I '.

where X,; is the simplified notation for X,,(\,'), By applying (A 13). elln (A5) hecomes

or

"'.(x,') -1/1.(.\, ) = n. x, E / ••

(AI3)

(AI4)

where \If.(:) denotes the sectionally holomorphic function [X,,(:)\ "1/1'(:), It follows from (AI4) that "'0(:) is
holomorphic in the entire plane. except at the point: = Y•• provided it is givcn suitable values on L. Further.
since tIt.(:) can only have a pole at inlinity. it must. by the generalized Liouville theorem. be a polynomial. Thus.
the most general solution of the homogeneous problem is given hy

","h'(:) = X,,(:)P.(:). (A 15)

where P.(:) is an arbitrary polynomial vector. If it is desin:d to obtain a solution which is also holomorphic at
infinity. it must be assumed that the degree of the polynomial p,,(:) docs not exceed II, This follows from the
behavior of X o(:) at infinity as given in (A II),

Next consider the non-homogeneous problem, Using (A 13). the houndary condition (A4) may be written as

(X,:I '''''(x,')-[Xo] '''''(x,) = (X,:] 'I. x,EL.

or

(AI6)

where'; .(:) = (Xo(:)] '\If'(:), Each component of elln (A 16) is in the form of (A I) with q = I. hence. by (A3)
we have

I i ItIt'(:) = '" Xo(:) -; [X,; (~)J "'1(,,) ds+ X,,(:)P.(:)
... 1t'1 I. S- ...

where P.(:) is an arbitrary polynomial vector with the degree not higher than II.

(A17)


